skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Ruihong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Disaggregating memory from compute offers the opportunity to better utilize stranded memory in cloud data centers. It is important to cache data in the compute nodes and maintain cache coherence across multiple compute nodes. However, the limited computing power on disaggregated memory servers makes traditional cache coherence protocols suboptimal, particularly in the case of stranded memory. This paper introduces SELCC; a Shared-Exclusive Latch Cache Coherence protocol that maintains cache coherence without imposing any computational burden on the remote memory side. It aligns the state machine of the shared-exclusive latch protocol with the MSI protocol, thereby ensuring both atomicity of data access and cache coherence with sequential consistency. SELCC embeds cache-ownership metadata directly into the RDMA latch word, enabling efficient cache ownership management via RDMA atomic operations. SELCC can serve as an abstraction layer over disaggregated memory with APIs that resemble main-memory accesses. A concurrent B-tree and three transaction concurrency control algorithms are realized using SELCC's abstraction layer. Experimental results show that SELCC significantly outperforms RPC-based protocols for cache coherence under limited remote computing power. Applications on SELCC achieve comparable or superior performance over disaggregated memory compared to competitors. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Memory disaggregation (MD) allows for scalable and elastic data center design by separating compute (CPU) from memory. With MD, compute and memory are no longer coupled into the same server box. Instead, they are connected to each other via ultra-fast networking such as RDMA. MD can bring many advantages, e.g., higher memory utilization, better independent scaling (of compute and memory), and lower cost of ownership. This paper makes the case that MD can fuel the next wave of innovation on database systems. We observe that MD revives the great debate of shared what in the database community. We envision thatdistributed shared-memory databases (DSM-DB, for short)- that have not received much attention before - can be promising in the future with MD. We present a list of challenges and opportunities that can inspire next steps in system design making the case for DSM-DB. 
    more » « less
  3. Abstract Over the last 20 years, N-heterocyclic carbenes (NHCs) have emerged as a dominant direction in ligand development in transition metal catalysis. In particular, strong σ-donation in combination with tunable steric environment make NHCs to be among the most common ligands used for C–C and C–heteroatom bond formation. Herein, we report the study on steric and electronic properties of thiazol-2-ylidenes. We demonstrate that the thiazole heterocycle and enhanced π-electrophilicity result in a class of highly active carbene ligands for electrophilic cyclization reactions to form valuable oxazoline heterocycles. The evaluation of steric, electron-donating and π-accepting properties as well as structural characterization and coordination chemistry is presented. This mode of catalysis can be applied to late-stage drug functionalization to furnish attractive building blocks for medicinal chemistry. Considering the key role of N-heterocyclic ligands, we anticipate thatN-aryl thiazol-2-ylidenes will be of broad interest as ligands in modern chemical synthesis. 
    more » « less
  4. Abstract Although cross‐coupling reactions of amides by selective N−C cleavage are one of the most powerful and burgeoning areas in organic synthesis due to the ubiquity of amide bonds, the development of mechanochemical, solid‐state methods remains a major challenge. Herein, we report the first mechanochemical strategy for highly chemoselective, solvent‐free palladium‐catalyzed cross‐coupling of amides by N−C bond activation. The method is conducted in the absence of external heating, for short reaction time and shows excellent chemoselectivity for σ N−C bond activation. The reaction shows excellent functional group tolerance and can be applied to late‐stage functionalization of complex APIs and sequential orthogonal cross‐couplings exploiting double solventless solid‐state methods. The results extend mechanochemical reaction environments to advance the chemical repertoire of N−C bond interconversions to solid‐state environmentally friendly mechanochemical methods. 
    more » « less